Resumen: In this paper we prove different functional inequalities extending the classical Rogers–Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets.
Idioma: Inglés
DOI: 10.1016/j.jfa.2016.09.005
Año: 2016
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 271, 11 (2016), 3269-3299
ISSN: 0022-1236

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P
Tipo y forma: Article (PrePrint)
Área (Departamento): Análisis Matemático (Departamento de Matemáticas)
0
Exportado de SIDERAL (2016-12-19-10:07:02)

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico

Visitas


 Notice créée le 2016-12-19, modifiée le 2016-12-19


Liens externes:
Télécharger le documentPreprint
Télécharger le documentPreprint
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)