Resumen: In this paper we prove different functional inequalities extending the classical Rogers–Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets.
Idioma: Inglés
DOI: 10.1016/j.jfa.2016.09.005
Año: 2016
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 271, 11 (2016), 3269-3299
ISSN: 0022-1236

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P
Tipo y forma: Artículo (PrePrint)
Área (Departamento): Análisis Matemático (Departamento de Matemáticas)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


0
Exportado de SIDERAL (2016-12-19-10:07:02)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Análisis Matemático

Visitas


 Registro creado el 2016-12-19, última modificación el 2016-12-19


Enlaces externos:
Descargar el texto completoPreprint
Descargar el texto completoPreprint
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)