Resumen: In this paper we prove different functional inequalities extending the classical Rogers–Shephard inequalities for convex bodies. The original inequalities provide an optimal relation between the volume of a convex body and the volume of several symmetrizations of the body, such as, its difference body. We characterize the equality cases in all these inequalities. Our method is based on the extension of the notion of a convolution body of two convex sets to any pair of log-concave functions and the study of some geometrical properties of these new sets.
Idioma: Inglés
DOI: 10.1016/j.jfa.2016.09.005
Año: 2016
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 271, 11 (2016), 3269-3299
ISSN: 0022-1236

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P
Tipo y forma: Article (PrePrint)
Área (Departamento): Análisis Matemático (Departamento de Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


0
Exportado de SIDERAL (2016-12-19-10:07:02)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático

Visitas


 Record created 2016-12-19, last modified 2016-12-19


External links:
Download fulltextPreprint
Download fulltextPreprint
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)