Resumen: We give accurate estimates for the constants (Formula presented.), where I = R or I = 0, 8), Ln is a positive linear operator acting on real functions f defined on the interval I, A(I) is a certain subset of such function, and ¿s 2(f; ·) is the Ditzian-Totik modulus of smoothness of f with weight function s. This is done under the assumption that s is concave and satisfies some simple boundary conditions at the endpoint of I, if any. Two illustrative examples closely connected are discussed, namely, Weierstrass and Szàsz-Mirakyan operators. In the first case, which involves the usual second modulus, we obtain the exact constants when A(R) is the set of convex functions or a suitable set of continuous piecewise linear functions.
Idioma: Inglés
DOI: 10.1186/s13660-016-1078-0
Año: 2016
Publicado en: JOURNAL OF INEQUALITIES AND APPLICATIONS 2016, 137 (2016), [17 pp.]
ISSN: 1025-5834

Financiación: info:eu-repo/grantAgreement/ES/DGA/E64
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2015-67006-P
Tipo y forma: Article (Published version)
Área (Departamento): Estadística e Investigación Operativa (Departamento de Métodos Estadísticos)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


0
Exportado de SIDERAL (2016-07-29-11:07:17)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Estadística e Investigación Operativa

Visitas


 Record created 2016-07-29, last modified 2016-10-06


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)