Resumen: Efficient management and analysis of large volumes of digital data has emerged as a major challenge in the field of digital forensics. To quickly identify and analyze relevant artifacts within large datasets, we introduce APOTHEOSIS, an approximate similarity search system designed for scalability and efficiency. Our system integrates approximate search techniques (which allow searching for a match on a close value) with Similarity Digest Algorithms (SDA; which capture common features between similar elements), using a space-saving radix tree and a graph-based hierarchical navigable small world structure to perform fast approximate nearest neighbor searches. We demonstrate the effectiveness and versatility of our system through two key case studies: first, in plagiarism detection, demonstrating the effectiveness of our system in identifying similar or duplicate documents within a large source code dataset; then, in memory artifact detection, showing its scalability and performance in processing large-scale forensic data collected from various versions of Microsoft Windows. Our comprehensive evaluation shows that APOTHEOSIS not only efficiently handles large datasets, but also provides a way to evaluate the performance of various SDA and their approximate similarity search in different forensic scenarios.
Idioma: Inglés
DOI: 10.1016/j.fsidi.2025.301930
Año: 2025
Publicado en: Forensic science international. Digital investigation 53 (2025), 301930 [9 pp.]
ISSN: 2666-2825

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113903RB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/T21-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA/T42-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2023-151467OA-I00
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131115A-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


0
Exportado de SIDERAL (2025-12-12-14:42:32)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Lenguajes y Sistemas Informáticos

Visitas


 Record created 2025-12-12, last modified 2025-12-12


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)