Resumen: Center-of-pressure (CoP) is a good clinical indicator in balance tests and fall-risk assessment. It can be detected using pressure sensitive mats (PSMs), which are affordable. However, these can suffer from certain nonidealities, such as hysteresis and creep. These effects have been assessed in literature. However, proposed algorithms have low computation speed and are complex. In this work, a completely new approach based on feedforward neural networks (FFNNs) is proposed with the goal of correcting the CoP given by PSMs, allowing real-time correction. Its performance is compared in terms of error and computation times with a state-of-the-art model, which corrects for hysteresis and creep in the PSM. Results show that FFNN can correct for the CoP measurements, providing a good accuracy-speed balance.
Idioma: Inglés
DOI: 10.1109/LSENS.2025.3601010
Año: 2025
Publicado en: IEEE Sensors Letters 9, 9 (2025), 7004804 [4 pp.]
ISSN: 2475-1472

Financiación: info:eu-repo/grantAgreement/ES/DGA/T49-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIN/PID2021-125091OB-I00
Financiación: info:eu-repo/grantAgreement/ES/MTDFP-INCIBE/C-2023-077
Tipo y forma: Article (Published version)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

0
Exportado de SIDERAL (2025-10-17-14:25:33)

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > tecnologia_electronica
articulos > articulos-por-area > ingenieria_electrica

Visitas


 Notice créée le 2025-09-26, modifiée le 2025-10-17


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)