Financiación H2020 / H2020 Funds
Resumen: The chemical deposition of high-performance zinc oxide (ZnO) thin films is challenging, thus significant efforts have been devoted during the past decades to develop cost-effective, scalable fabrication methods in gas phase. This work demonstrates how ultra-short-pulse laser beam scanning (LBS) can be used to modulate electrical conductivity in ZnO thin films deposited on soda–lime glass by spatial atomic layer deposition (SALD), a high-throughput, low-temperature deposition technique suitable for large-area applications. By systematically optimizing laser parameters, including pulse energy and hatching distance, significant improvements in the electrical performance of 90 nm-thick ZnO films were achieved. The optimization of the laser annealing parameters – 0.21 μJ per pulse energy and a 1 μm hatching distance—yielded ZnO films with an electrical resistivity of (9 ± 2) × 10−2 Ω cm, 3 orders of magnitude lower than as-deposited films. This result suggests that laser post-deposition processing can play an important role in tailoring the properties of ZnO thin films. Excessive laser intensity can compromise structural integrity of the films, however, degrading their electrical transport properties. Notably, the electrical resistance of laser-annealed ZnO films exhibited high sensitivity to oxygen concentration in the surrounding atmosphere, suggesting exciting prospects for application in devices based on transparent oxygen sensors. This study thus positions ultra-short pulsed laser annealing as a versatile post-deposition method for fine-tuning the properties of ZnO thin films, enabling their use in advanced optoelectronic and gas-sensing technologies, particularly on temperature-sensitive substrates.
Idioma: Inglés
DOI: 10.1039/d5lf00076a
Año: 2025
Publicado en: RSC applied interfaces (2025), [14 pp.]
ISSN: 2755-3701

Financiación: info:eu-repo/grantAgreement/ES/DGA/T54-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/801464/EU/ Ultra-versatile Structural PRINTing of amorphous and tuned crystalline matter on multiple substrates /SPRINT
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2023-146041OB-C21
Financiación: info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-113034RB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)

0
Exportado de SIDERAL (2025-10-17-14:14:32)

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > ciencia_de_los_materiales_e_ingenieria_metalurgica
articulos > articulos-por-area > matematica_aplicada
articulos > articulos-por-area > ingenieria_quimica

Visitas


 Notice créée le 2025-09-26, modifiée le 2025-10-17


Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)