Resumen: We establish the (polynomially) logarithmic decay of ergodic means of Cesàro bounded operators of any fractional order, under convergence of the one-sided ergodic Hilbert transform. This extends the theorem of Gomilko, Haase and Tomilov for power bounded operators. We also improve the polynomial decay of means involved in the fractional Poisson equation. The theorems are obtained as an application of a general result, also proved here, about rates of decay of means for Cesàro bounded operators.
Idioma: Inglés
DOI: 10.1007/s44146-025-00189-3
Año: 2025
Publicado en: Acta Scientiarum Mathematicarum (2025), [34 pp.]
ISSN: 0001-6969

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICIU/PID2022-137294NB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


0
Exportado de SIDERAL (2025-10-17-14:37:35)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático

Visitas


 Record created 2025-08-18, last modified 2025-10-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)