

Información del Plan Docente

Año académico 2017/18

Centro académico 110 - Escuela de Ingeniería y Arquitectura

Titulación 436 - Graduado en Ingeniería de Tecnologías Industriales

Créditos 6.0

Curso 4

Periodo de impartición Primer Semestre

Clase de asignatura Optativa

Módulo ---

1.Información Básica

1.1.Introducción

Breve presentación de la asignatura

En esta asignatura al estudiante de Ingeniería se le presentan conceptos básicos de diseño de vehiculos. Por este motivo, se analizarán conceptos relacionados con:

- Tipologías y arquitecturas de vehículos
- · Comportamiento dinámico del automóvil y diseño de sus principales sistemas
- Sistemas de seguridad: seguridad primaria y seguridad secundaria.
- · Normativa del automóvil
- Empleo de métodos asistidos por ordenador aplicados al diseño de vehículos

1.2. Recomendaciones para cursar la asignatura

Es necesario que el alumno esté familiarizado con los conocimientos impartidos en Física, Matemáticas, Mecánica y Elasticidad y resistencia de materiales, donde se habrán adquirido diversas competencias de cálculo, conceptos básicos de cinemática y dinámica de la partícula y del sólido rígido, así como fundamentos de cálculo de sistemas mecánicos.

Se aconseja al alumno seguir la asignatura de forma presencial y continuada, asistiendo y participando activamente en las clases con el profesor, tanto teóricas como prácticas, y realizar los trabajos tutelados. Esto permitirá al alumno adquirir paulatinamente los conocimientos impartidos en las diferentes sesiones y abordar sin dificultad las pruebas de evaluación y tareas periódicas programadas a lo largo del curso. Para avanzar correctamente, el estudiante cuenta con la asesoría del profesor, durante las horas de tutoría y seminarios, para el seguimiento de las actividades propuestas y para resolver cualquier duda que se le presente.

1.3. Contexto y sentido de la asignatura en la titulación

Diseño y arquitectura de vehículos es una asignatura optativa de la intensificación en Medios de transporte del Grado en Ingeniería de Tecnologías Industriales.

En este contexto se presentan los conceptos básicos sobre vehículos de carretera, Los alumnos han cursado en semestres anteriores asignaturas básicas, necesarias para comprender los modelos matemáticos de los sistemas. El alumno aprende en la asignatura a analizar el comportamiento de cada uno de estos sistemas y su influencia e interferencia con el resto de sistemas del vehículo. Al finalizar la asignatura el alumno es capaz de comprender la

transcendencia del vehículo y sus sistemas y su importancia en la industria y en la sociedad.

1.4. Actividades y fechas clave de la asignatura

El calendario académico con las fechas de inicio y finalización de la asignatura y las horas concretas de impartición se podrán encontrar en la página web del Centro.

El estudiante debe estar atento a las fechas detalladas de realización de prácticas y entrega de trabajos de las que será convenientemente informado tanto en clase como a través de http://moodle.unizar.es/, donde se expondrán las principales actividades a realizar para seguir la asignatura.

2. Resultados de aprendizaje

2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- 1. Conoce y comprende los principios fundamentales del diseño de vehículos
- 2. Conoce y comprende la interacción entre el vehículo y su entorno: carretera, atmósfera.
- 3. Comprende las características propias de los distintos tipos de vehículos (automóviles, vehículos pesados) y su adaptabilidad para el transporte de personas y mercancías.
- 4. Conoce las ventajas y desventajas de la utilización de distintos materiales en vehículos, así como los aspectos constructivos que implica la utilización de unos u otros

2.2.Importancia de los resultados de aprendizaje

Estos resultados, y las capacidades y habilidades de ellos derivadas, tienen una gran importancia en el entorno industrial, donde el transporte de pasajeros y de carga es una pieza clave y fundamental para el desarrollo de la economía en cualquier entorno social, permitiendo optimizar costes y mejorar la calidad de cada uno de los componentes.

3. Objetivos y competencias

3.1.Objetivos

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Los objetivos de la asignatura son de dos tipos:

- Teóricos: Se persigue que el alumno conozca y maneje los contenidos teóricos básicos sobre vehículos de carretera. Al finalizar la asignatura el alumno será capaz de analizar, desarrollar y comprender los modelos de simulación del movimiento correspondientes, requiriéndose el uso de conceptos técnicos y matemáticos proporcionados por las asignaturas anteriormente cursadas.
- 2. Prácticos: Se persigue que el alumno sepa utilizar herramientas de apoyo en el diseño de vehículos. Al finalizar la asignatura el alumno será capaz de: identificar los distintos sistemas del vehículo y conocer su funcionamiento; analizar el comportamiento dinámico del vehículo; aplicar las técnicas y métodos para el diseño y disposición de los diversos sistemas del vehículo

3.2.Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias genéricas:

- 1. Resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico (C4).
- 2. Usar las técnicas, habilidades y herramientas de la Ingeniería Industrial necesarias para la práctica de la misma

(C7).

- 3. Gestionar de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería Industrial (C10).
- 4. Aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo (C11).

Competencias específicas:

- 1. Conocimientos y capacidades para la aplicación de la Ingeniería de materiales (C32).
- 2. Conocimientos y capacidades para el cálculo, diseño y ensayo de máquinas (específicamente vehículos) (C36).
- 3. Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales (C37).

4. Evaluación

4.1. Tipo de pruebas, criterios de evaluación y niveles de exigencia

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Prueba escrita individual (70%). Calificada entre 0 y 10 puntos (CT). Los estudiantes deberán demostrar sus conocimientos y aptitudes respondiendo a cuestiones teórico-prácticas y resolviendo problemas similares a los abordados en las clases de problemas.

Evaluación de los trabajos prácticos (30%). Calificada entre 0 y 10 puntos (CP), podrá superarse a lo largo del curso. En cualquier caso se realizará una prueba individual específica durante cada periodo de evaluación para los alumnos que no la hayan superado durante el curso, o que deseen subir nota.

Para la superación de la asignatura es condición imprescindible obtener unas calificaciones CT y CP ambas mayores o iguales que 3.5 puntos. Sólo en ese caso, la calificación global de la asignatura será (0.30*CP+ 0.70*CT). En otro caso, la calificación global será la mínima entre 4 y el resultado de aplicar la fórmula anterior. La asignatura se supera con una calificación global de 5 puntos sobre 10.

5. Metodología, actividades, programa y recursos

5.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

- 1. Clases magistrales por parte de los profesores.
- 2. Resolución de problemas planteados en clase.
- 3. El desarrollo de prácticas por parte de los alumnos, supervisadas por los profesores. En ellas aplicarán gradualmente, en un entorno simulado o real, sus conocimientos teóricos, enfrentándose a las limitaciones y condicionantes que son inherentes a los sistemas reales.
- 4. Estudio personal por parte de los alumnos.

5.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

- 1 Clases magistrales con exposición de contenidos teóricos y ejemplos de aplicación.
- 2 Clases prácticas que incluyen evaluación dinámica de pequeños vehículos y, cuando sea posible, vehículos de turismo.
- 3 Visitas a empresas/instituciones relacionadas con la gestión de vehículos y su seguridad

5.3.Programa

- Reglamentación aplicada al automóvil (nacional y su entorno europeo)
- Tipologías y arquitecturas de vehículos
- Comportamiento dinámico y diseño de sistemas del automóvil (elementos del sistema de suspensión y comportamiento cinemático y dinámico del vehículo)
- Sistemas de seguridad

5.4. Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

El calendario de la asignatura para sesiones presenciales de clases y prácticas está fijado por el Centro.

Las demás actividades relacionadas con el aprendizaje que se pueden realizar durante el curso se anunciarán con la adecuada antelación.

5.5.Bibliografía y recursos recomendados

La bibliografía de la asignatura se podrá consultar a través de este enlace

http://biblioteca.unizar.es/como-encontrar/bibliografia-recomendada