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Abstract A novel technique is proposed to predict force
reduction of skeletal muscle due to fatigue under the
influence of electrical stimulus parameters and mus-
cle physiological characteristics. Twelve New Zealand
white rabbits were divided in four groups (n = 3) to
obtain the active force evolution of in vitro Extensor
Digitorum Longus muscles for an hour of repeated con-
tractions under different electrical stimulation patterns.
Left and right muscles were tested and a total of 24 sam-
ples were used to construct a response surface based in
the proper generalized decomposition. After the respon-
se surface development, one more rabbit was used to
check the predictive potential of the surface. This mul-
tidimensional surface takes into account not only the
decay of the maximum repeated peak force, but also
the shape evolution of each contraction, muscle weight,
electrical input signal and stimulation protocol. This
new approach of the fatigue simulation challenge allows
to predict, inside the multi-space surface generated, the
muscle response considering other stimulation patterns,
different tissue weight, etc.
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1 Introduction

During a period of activity, the force output of skele-
tal muscle declines. This phenomena, known as fatigue,
involves multitude of processes and physiological mech-
anisms that remain being an object of study and analy-
sis (Bruton et al, 2000; Allen et al, 2008). One common
approach used to reproduce muscle fatigue in vitro con-
sists of whole muscles dissected and placed in a bath
solution. The in vitro protocols are very popular to
study skeletal muscle fatigue without nervous system
interference (Aslesen et al, 2001; Clausen and Nielsen,
2007; Cairns et al, 2007, 2008; Goodman et al, 2009;
van Lunteren et al, 2011; Head et al, 2011; El-Khoury
et al, 2012). Moreover, it has been demonstrated that
this technique, in which muscles are stimulated electri-
cally with all fibers being activated simultaneously and
repeatedly, maintains the contractile properties of the
tissue regarding calcium signalling, ion exchange, oxy-
gen diffusion and energy metabolism (de Paula Brotto
et al, 2001; Thornton et al, 2011; El-Khoury et al, 2012;
Park et al, 2012; Clausen, 2013a,b).

To obtain useful information in these experimental
fatigue models about the rate and extent of fatigue,
there have been several attempts to curve-fit the en-
tire fatigue profile (i.e., peak maximum force/stress vs
time). For a review of different aproximations in this
context, the reader is referred to the work of Cairns
et al (2008). Although these fittings ensure quantitative
comparisons of fatigue with different stimulation proto-
cols, they involve averaging curves and interindividual
differences are neglected (Cairns et al, 2008). Moreover,
the information contained in the force development of
individual contractions is not considered.

The response surface methodology (RS) has been
used successfully in many research works in the biome-
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chanics field in optimization studies (Lin et al, 2006;
Nirmalanandhan et al, 2008; Eberle et al, 2013), experi-
mental (Zhao et al, 2012) and computational test design
(Sigal and Whyne, 2010), looking for critical variables
in a complex problem (Wang et al, 2005), etc. Basi-
cally, response surfaces are multidimensional surfaces
fit to quantities of interest which mathematical form
allows easy interpolations to obtain another realization
with a different combination of parameters. The multi-
dimensional approximation increases its complexity and
computational cost due to the well-known “curse of di-
mensionality” (Ladeveze and Chamoin, 2011). To re-
duce this order of complexity, the use of the response
surface methodology combined with the technology of
model reduction, known as proper generalized decom-
position (PGD) (El Halabi et al, 2013b), is proposed in
this work. This latter technique, based on the use of se-
parated representations, was developed for solving mul-
tidimensional models (Ammar et al, 2006, 2007) and in
the context of stochastic modeling (Nouy, 2007). The
technique was extended for addressing parametric mo-
dels, where model parameters were considered as model
extra-coordinates. This made possible the calculation of
the parametric solution that can be viewed as a meta-
model or a computational vademecum, to be used for
real-time simulation, optimization, inverse analysis and
simulation-based control (Chinesta et al, 2013).

The study reported here was conducted with the
main objective of investigate the potential of the RS
with the technology of PGD to predict the fatigue res-
ponse of skeletal muscle. In this way, a multidimensional
surface was fitted to a limited number of experimental
results obtained in an in vitro animal model. After-
wards, in order to validate our model, a new in vitro
experiment was carried out using a different parame-
ter combination from those used to develop the model.
The results obtained were compared with the response
prediction given by our model.

The paper is established as follows: In the next sec-
tion the animal model and stimulation protocols to ob-
tain the experimental data are presented. Then, a brief
description of RSPGD for a general multidimensional
case is presented and several numerical examples are
introduced. Finally, the possibilities of the method, its
cost and accuracy for different design parameters are
discussed and different concluding remarks presented.

2 Material and Methods

The experimental study was conducted on thirteen male
New Zealand White rabbits aged two months and with
a body mass of 2150 ± 50 g. All experiments were ap-
proved by the University of Zaragoza Ethics Commit-

tee for the use of animals in experimentation in ac-
cordance with the provisions of the European Council
(ETS 123) and the European Union (Council Directive
86/609/EEC) regarding the protection of the animals
used for experimental purposes. The animals were kept
in a temperature controlled room (22± 1 ◦C) with 12h
light-dark cycles and free access to water and food.

2.1 Muscle preparation

Animals were anesthetized with a Medetomidine (0.14
mg/Kg), Buprenorfine (0.02 mg/Kg) and Ketamine (20
mg/Kg) protocol and then euthanized by an intravenous
overdose of sodium pentobarbital. Immediately after-
wards, the animal was placed on its back and a midline
incision was done to the ankle in the midsection of the
knee. Tibialis Anterior (TA) was removed to access to
the Extensor Digitorum Longus (EDL). The EDL mus-
cle was carefully extracted by cutting off the distal and
proximal tendons. Then, a cyanoacrylate sandpaper tab
was pasted to both tendons in order to ensure a perfect
attachment to the machine.

2.2 Protocol stimulation

Functional in vitro testing of rabbit muscles were car-
ried out in a methacrylate organ bath (20×20×20 cm)
designed by the authors to be installed in an electrome-
chanical Instron Microtester 5248. The distal tendon of
each muscle was strongly fixed inside the bath and the
proximal tendon of the muscles samples were also fixed
to the machine actuator with a 50 N full scale load
cell (Fig. 1.a). Once the sample is vertically fixed, the
temperature of the oxygenated Ringer’s solution was
maintained pumping it through a separate temperature
controller and back to the organ bath. This physiologi-
cal environment (27 ◦C and oxygen saturated solution)
assured a physiological response to the electrical stimu-
lation. To this aim, a pair of platinum plate electrodes
running the length of the isolated muscle on either side
were connected to a CIBERTEC CS-20 electrical signal
generator. The gap between these plates can be regu-
lated to avoid the contact with the tissue. Thus, the
muscle was stimulated by the electrical field generated
by the electrodes and not by direct contact (see Fig.
1.a). Before the fatigue protocol, each sample was sub-
jected to a length sweep with short active stimulation
in order to determine its optimal length.

Twelve rabbits were divided in four groups (3 ani-
mals per group), in each group left and right EDL were
tested (n = 6). The amplitude of the electrical impulse
was fixed to 100 V for all the groups as well as the
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Fig. 1 (a) Scheme of the experimental setup using an universal testing machine. (b) Raw data for evolution of muscle force
registered by the data acquisition software.

Table 1 Electrical stimulation parameters selected for the
different groups. The amplitude of the signal was fixed at 100
V.

Pulse Frequency Stimulation Rest
duration (s) (Hz) time (s) time (s)

Group 1 − − 0.2 6
Group 2 0.001 40 0.2 10
Group 3 0.001 60 0.2 10
Group 4 0.001 100 0.2 10

stimulation time, fixed to 0.2 s. In the first group, EDL
muscles were stimulated with a continuous signal with
100 V amplitude . The interval between train of pulses
was 6 s. All the other groups received the same pulse
duration (1 ms) and the same rest time (10 s). However,
the frequency was 40 Hz for the second group, 60 Hz the
third group and 100 Hz the fourth one. All the muscles
were stimulated for one hour. The different parameters
for each group are presented in Table 1.

Finally, after the development of the response sur-
face and in order to validate its predictive potential,
one more rabbit was used. The signal applied to the
right EDL sample consisted of 0.005 s pulses at 80 Hz
during 0.2 s. The amplitud of the signal was maintained
at 100 V and the time interval between train of pulses
was fixed to 10 s.

In Fig. 1.b the raw data obtained for one sample
during the one hour protocol can be observed. The ac-
quisition software recorded force and time pair of values
when the force developed by the tissue increased or de-
creased 1 mN.

2.3 The RSPGD approach

In this section a brief description of the Response Sur-
face using Proper Generalized Decomposition metho-
dology (RSPGD) (El Halabi et al, 2013b) is presented.

The RS can be easily explained as the best approxi-
mation response function f(x1, x2, · · · , xn) partially de-
fined by a cloud of values of that function coming from
external numerical results, experiments, or any other
source of data. This response function dependent on
the values of n input variables or quantitative factors
x = {x1, x2, · · · , xn} which are considered capable of
define a hyper surface in the bounded region Ω ⊂ Rn

(called the experimental region) in which we consider
constrained the values of x by practical limitations.

Many types of functions have been used as approxi-
mation functions determining their associated constants
using a regression analysis, like least squares technique.
Other fitting methods, such as weighted least squares
regression, best linear unbiased predictor used for Kri-
ging, back-propagation mostly implemented in neural
networks, and many others (Nakashima, 1995; Sakata
et al, 2007; Arellano-Garcia et al, 2007; Park and Park,
2010; Koutsourelakis, 2008; Langley and Simon, 1995),
can be used for this proposal.

However, the fitting procedure for high-dimensional
spaces is not frequently found and has not been imple-
mented due to its intrinsic complexities (Lesh, 1959).
The use of high number of parameters to handle for
a high-dimensional fitting increases exponentially with
the number of dimensions. To avoid the so-called “curse
of dimensionality” that appears in traditional strate-
gies, model reduction techniques has been developed in
the last years. The main characteristic of model reduc-
tion methods are that the response of complex models
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can be approximated by the one of a surrogate model
which represents the projection of the initial model on
a low dimensional reduced basis (Nouy, 2010). The dif-
ference between the different model order techniques
is the way of defining and constructing this basis. The
RSPGDmethodology applied in this work, uses a model
reduction method based on separation of variables called
Proper Generalized Decomposition (PGD) (Ammar et al,
2006, 2007; Chinesta et al, 2010b; Gonzalez et al, 2010).
PGD have been introduced in different contexts like pa-
rameterized PDEs (Nouy et al, 2008; Nouy, 2009; Nouy
and Le Maitre, 2009; Doostan and Iaccarino, 2009),
multi-scale models (Chinesta et al, 2010a; Neron and
Ladeveze, 2010; El Halabi et al, 2013a), parametric
modeling and structural optimization (Leygue and Ver-
ron, 2010), multi-dimensional PDEs (Ammar et al, 2006,
2007; Gonzalez et al, 2010; Nouy, 2010), non-linear mo-
dels (Niroomandi et al, 2013a,b), dynamic behavior (Gon-
zalez et al, 2014), etc.

This technique is a greedy algorithm that constructs
the approximation of the solution by means of a sum of
products (sometimes called finite sum decomposition)
of separated one-dimensional functions depending on
each of the problem dimensions or parameters. Each of
these functions is determined by an iterative method,
with no initial assumption on their form, although usua-
lly, they are expressed as piecewise linear splines with
small support as in standard linear one-dimensional fi-
nite elements.

Let ψ(x) be a scalar function of x = (x1, x2, · · · , xn) ∈
Ω =

∏n
i=1[li, Li]. In the PGD approach, this function

is approximated as:

ψ(x) ≈
T∑

i=1

ωi

n∏
k=1

F k
i (xk) =

T∑
i=1

ωiFi (1)

with F k
i (xk) the i− th one-dimensional function of the

k − th variable xk that has to be computed in an im-
plicit scheme, n the number of independent variables
(dimensions), Fi the product of n functions F k

i and T
the number of sums or terms for the approximation.

For the fitting procedure in each dimension, a least
square approach is established. Given a set of pairs
(xm, ψm) with m = 1, . . . , D known values of the func-
tion ψ for D combinations of independent parameters,
find the function F (x) expressed as in (1) which mini-
mizes E defined as:

E =

D∑
m=1

[ψm − F (xm)]2 (2)

Where, F k
i (xk) are usually expressed in discrete form

as:

F k
i (xk) =

Jk∑
j=1

Nk
j (xk)z

k
ij (3)

withNk
j the standard linear one-dimensional shape func-

tion evaluated in xk, zkij the nodal value vector of the
function F k

i at node j. For minimization of E, the par-
tial derivatives with respect to the parameters of F (x)
must be zero. The algorithm consists in an iterative
procedure to add new terms in the finite sum until con-
vergence of the solution. To this end, a three steps are
proposed:

1. Projection Step Compute the coefficients ωi from
the linear system of equations derived from the mi-
nimization of the functional E with respect to the
coefficients ωi

∂E

∂ωi
= 2

D∑
m=1

[ψm − F (xm)]
∂F

∂ωi
, i = 1, . . . , T ;

(4)

The equivalent linear system may be expressed as:

Kω = f (5)

2. Convergence Step A convergence check for the
overall solution is proposed in this stage, that is, for
the already computed values of the basis functions
F k
i (xk), i = 1, . . . , T ; k = 1, . . . , n and coefficients
ωi, i = 1, . . . , T the value of the relative error εmust
be below a certain predefined accuracy limit.

ε =

√
E∑D

m=1[ψm]2
< TOL (6)

with E given by (2).
If this condition is fulfilled the solving process fini-
shes and if not, we move to the next step.

3. Enrichment Step A new term T+1 is added to the
finite sum, so the new basis functions F k

T+1(xk), k =

1, . . . , n have to be obtained. In this “enrichment
stage” (Ammar et al, 2006; Gonzalez et al, 2010)
the response function is then written as:

F (x1, . . . , xn) =

T∑
i=1

ωi

n∏
k=1

F k
i (xk) +

n∏
k=1

Rk(xk) (7)

Here F k
T+1(xk) has been substituted byRk(xk) since

the normalized basis functions F k
T+1(xk) will be ob-

tained by normalizing the functions Rk(xk) once the
iterative process described below converges. To com-
pute the enrichment functions, a non-linear problem
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Table 2 Intervals and discretization of each parameter for
the EDL

Factor Initial Final Number of
Value Value Elements

Frequency (Hz) 35 110 1
Pulse duration (s) 0.0001 0.015 1
Muscle weight (g) 1.2 2.75 2
Animal weight (kg) 1.1 2.9 2
Rest time (s) 5 11 1
Total time (s) 0 3600 100

with as many equations as the number of dimensions
(k = 1, 2, · · · , n) and obtained by replacing (6) into
(2), must be solved.

The intervals and discretization of the variables con-
sidered in the response surface are presented in Table
2.

3 Results

3.1 Experimental results

Average muscle weight, length and volume together with
standard deviation are presented in Table 3. In order to
obtain an estimation of the cross sectional area (CSA)
of the muscles, the technique proposed by Calvo et al
(2010) was followed, results are shown in Table 4.

Table 3 Muscle weighs, muscle lengths and muscle volumes
from each experimental group recorded by the authors.

Muscle weight Muscle length Muscle volume
±SD (g) ±SD (mm) ±SD (ml)

Group 1 2.34± 82.94 68.4± 0.54 2.32± 0.1
Group 2 2.42± 69.46 60.25± 1.5 2.37± 0.05
Group 3 2.07± 226.18 57.25± 4.99 2.02± 0.28
Group 4 2.10± 128.04 60.25± 4.42 2.07± 0.15

All the muscles were at optimal length before star-
ting experiments in order to obtain maximal force pro-

Table 4 Cross Sectional Area estimated from muscle mea-
surements.

CSA ±SD (mm2)

Group 1 33.64± 1.20
Group 2 39.55± 0.6
Group 3 35.50± 1.6
Group 4 34.43± 2.73

duction. Length sweep registration can be observed in
Fig. 2.

In Fig. 3 the experimental results are presented in
the classical form in which the peak maximum stress
evolution is averaged for the samples in the four groups.
There were no significant differences among groups. Ne-
vertheless, the Group 1 experimented the greatest de-
cline, showing at t = 1000 s a reduction of around a
87.5%.

Fig. 4.a represents the evolution of the normalized
force for the different contractions along the fatigue pro-
tocol for one of the samples (Group 1). In the figure,
only every ten pulses are shown to allow a correct vi-
sualization. This evolution can be represented in a 3D
plot where the third axis is the number of pulses or
contractions. Plotting every ten pulses the result can
be observed in Fig. 4.b. Analyzing the evolution of the
pulses only the first seventy are monotonically increa-
sing until the impulse ends. From that point, the pulses
experimented increasing sag until the 100-th pulse ap-
proximately and then the sag remained more or less
constant.

3.2 RSPGD approximation results

The experimental data were obtained using the proto-
col defined in Section 2 and a total of 12 samples were
considered. The solution obtained using the RSPGD al-
gorithm were the vectors that represent the basis func-
tions of the approximation and its respective ω values,
with which it is possible to evaluate the response at any
point of the multi-dimensional domain.

In order to check the behavior of the response sur-
face to obtain new values for the muscle forces, a nu-
merical test has been developed. The response surface
was evaluated at the same stimulation parameters se-
lected for the last sample described in Section 2. The
evolution of the maximum peak force for the compu-
tational and experimental results can be observed in
Fig. 5.a. A comparison between the 50-th contraction
is represented in Fig. 5.b. The computed relative error
between the RS prediction and the experimental result
is less than 13%. Finally, the evolution of all the con-
tractions are shown in 5.c.

4 Discussion and Conclusions

Experimental EDL force registered through the one hour
stimulation, showed a characteristic profile correspon-
ding with fast-twitch muscles, where a significative drop
of 80% of initial force is usually observed after 1000 s
of stimulation. Similar force decline was characterized
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Fig. 2 Relationship obtained for all the muscles tested. Optimal muscle lengths were fixed to register maximum forces.
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Fig. 3 Evolution of maximum stress developed by EDL muscles under the different stimulation protocols presented in Table
1. The amplitude of the signal was the same for all groups (100 V). The continuos line represents the average peak maximum
value and the grey regions are the ± standard deviation bounds.



Predicting muscle fatigue. A response surface approximation based on proper generalized decomposition technique. 7

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Time (s)

N
o

rm
a

li
z
e

d
 F

o
rc

e

0

0.2

0.4
0

200
400

600

0

0.2

0.4

0.6

0.8

1

Number of contractions
Time (s)

N
o

rm
a

li
z
e

d
 F

o
rc

e

Fig. 4 Experimental data: a) Evolution of EDL force and its contraction shape through time b) Contraction evolution of EDL
in a 3D representation.
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Fig. 5 a) Evolution of maximum peak force obtained by the RS (blue) and the experimental result (red). b) 50-th contraction
obtained by the RS (blue) and experimentally (red). c) Contraction evolution in a 3D representation obtained by the RS (blue)
and experimentally (red).
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before in mammals muscles with fast fiber composition
(Vedsted et al, 2003; Cairns et al, 2004, 2007; Katz et al,
2014) which agree with fast behavior described in lite-
rature (Schiaffino and Reggiani, 2011). Estimation of
cross sectional area allowed us to obtain de maximum
isometric stress produced by the EDL muscles. As ob-
served in Fig. 3, our results showed a range of tensions
from around 0.4 MPa to 0.6 MPa. In general, muscle
tension in literature reached until 0.4 MPa in mam-
mals. Sperringer and Grange (2016) and Head et al
(2011) showed values around 0.4 MPa in mice whole
muscles and the same is reported by Goodman et al
(2009) in rat EDLs. The maximum tension reached by
our samples (0.6 MPa) seemed to be outside of the nor-
mal range reported by other authors. Since estimation
of cross sectional area in whole muscles is less accurate
than in muscle fibers, it could be possible that some of
these values were overestimated.

Skeletal muscle fatigue manifests as a result of repet-
itive or sustained muscle contraction and can be de-
fined as a temporary reduction in the capacity of the
tissue to generate force. Many protocols have been de-
scribed in literature (Allen, 2004; Brotto et al, 2004;
Chan and Head, 2010; Mutchler et al, 2015), however,
there are several issues in both, animal and human,
studies. For human, in vivo behavior study of an iso-
lated muscle is complicated (Barbieri et al, 2014) and
in vitro experiments require biopsies which are not al-
ways easy to obtain (Alghannam et al, 2014; Zampieri
et al, 2015). The animal studies allow to increase the
amount of samples or carry out in vitro experiments in
a whole muscle (Bottinelli et al, 1991; Chan et al, 2008;
Grasa et al, 2014). Nevertheless, a long-standing sci-
entific challenge is to reduce the number of animals in
experiments and replace them with reliable methods in
order to obtain the same information. Computational
models have been developed to predict the evolution of
the force and to simulate the onset of fatigue. However,
many of them only can fit the biological data obtained
from the biological experiments (Tang et al, 2007; Böl
et al, 2011; Grasa et al, 2014). The response surface
presented here incorporates an important advantage in
comparison with previous approximations because it al-
lows to obtain new fatigue data from parameters not
tested in animals. Furthermore, the mechanisms under-
lying muscle fatigue are not well understood yet. Due to
the complexity of the phenomenon and the high number
of factors included, the explanation has to take into ac-
count both, the molecular actin-myosin interaction and
the macroscopic phenomena observed in striated mus-
cle as well as how conditions imposed on macroscopic
scales affect actin-myosin kinetics (Minozzo et al, 2012;
Röhrle et al, 2012). This response surface approxima-

tion could predict not only the force obtained in a wide
range of stimulation parameters but also how muscle
performance change and decline inside each stimula-
tion, because the high precision of the acquisition sys-
tem allows to register the evolution of each contrac-
tion. The results provided by this technique, when fo-
cusing on the evolution of maximum peak force, are in
agreement with those obtained by other authors in mus-
cles of different specimens (Burke et al, 1973; Darques
et al, 2003; Cairns et al, 2008). Regarding the human
research, this information about performance is very
important in the sport field, where muscle efficiency
is always the most important target (Dickerson et al,
2015; Mohr et al, 2016). Moreover, one of the main ad-
vantages of the in vitro tests developed in this work is
that the central fatigue is completely eliminated (Allen
et al, 2008). This could be useful when the influence of
substances in the muscle performance is investigated.

The RSPGD methodology used in this work to com-
pute the large number of parameters considered has
demonstrated that few experimental data were enough
to generate the approximation and to obtain reasonable
good results. The use of RSPGD do not have previous
constrains for the approximation, which is not the case
for traditional fitting techniques where it is useful to
prescribe the approximation function type to use. This
characteristic gives the technique higher flexibility to
fit functions with high variations. Nevertheless, the dis-
cretization must have sufficient information in each e-
lement to obtain good response, due to the local cha-
racter of the technique. The principal advantage of the
methodology proposed appears in high dimensionality
problems where the classical fitting procedures can not
be applied (El Halabi et al, 2013b).

The results obtained could be improved in several
ways, one of them involves adding more enrichment ba-
sis functions to the approximation, or adding new ex-
perimental data to enrich the sample. Another way is
to change the size of the discretization for each fac-
tor. A study to optimize this discretization can be car-
ried out, where each factor influence over the response
is obtained through a previous Taguchi’s design of ex-
periments. If some factors show high variability, a bet-
ter discretization for these factors must be considered,
whereas, if a factor shows a constant behavior with very
few elements will be enough.

Finally, mathematical models could lead into a bet-
ter understanding of muscle fatigue to unveil the com-
plex physiological phenomenon during continued mus-
cle stimulation. Progress in this field, with the help
of the technique proposed, would improve functional
electrical stimulation (FES) techniques where muscle
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fatigue is currently a major drawback (Shorten et al,
2007).
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