000057800 001__ 57800
000057800 005__ 20161213122925.0
000057800 0247_ $$2doi$$a10.3390/md14100175
000057800 0248_ $$2sideral$$a97011
000057800 037__ $$aART-2016-97011
000057800 041__ $$aeng
000057800 100__ $$0(orcid)0000-0001-6995-4302$$aDe Matteis  , Laura
000057800 245__ $$aControlling properties and cytotoxicity of chitosan nanocapsules by chemical grafting
000057800 260__ $$c2016
000057800 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057800 5203_ $$aThe tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery.
000057800 536__ $$9info:eu-repo/grantAgreement/EUR/H2020/MCSA-660228$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 MCSA-660228$$9info:eu-repo/grantAgreement/ES/MINECO/SAF2014-54763-C2-2-R
000057800 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000057800 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057800 700__ $$aAlleva, M.
000057800 700__ $$aSerrano-Sevilla, I.
000057800 700__ $$aGarcía-Embid, S.
000057800 700__ $$0(orcid)0000-0002-4170-7999$$aStepien  , Grazyna Elzbieta
000057800 700__ $$aMoros, M.
000057800 700__ $$0(orcid)0000-0003-1081-8482$$aMartínez de la Fuente, Jesús$$uUniversidad de Zaragoza
000057800 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDepartamento de Química Orgánica$$cQuímica Orgánica
000057800 773__ $$g14, 10 (2016), [15 pp.]$$pMarine Drugs$$tMarine Drugs$$x1660-3397
000057800 8564_ $$s3099479$$uhttp://zaguan.unizar.es/record/57800/files/texto_completo.pdf$$yVersión publicada
000057800 8564_ $$s102966$$uhttp://zaguan.unizar.es/record/57800/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057800 909CO $$ooai:zaguan.unizar.es:57800$$particulos$$pdriver
000057800 951__ $$a2016-12-13-10:03:44
000057800 980__ $$aARTICLE