000056184 001__ 56184
000056184 005__ 20161006102712.0
000056184 0247_ $$2doi$$a10.1109/JSEN.2015.2451732
000056184 0248_ $$2sideral$$a94658
000056184 037__ $$aART-2016-94658
000056184 041__ $$aeng
000056184 100__ $$0(orcid)0000-0001-9897-6527$$aPina Iritia, María Pilar$$uUniversidad de Zaragoza
000056184 245__ $$aExplosives Detection by Array of Si µ -Cantilevers Coated with Titanosilicate-Type Nanoporous Materials
000056184 260__ $$c2016
000056184 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056184 5203_ $$aAn array comprising four Si µ -cantilevers coated with nanoporous functionalized ETS-10 crystals sub-micrometric in size has been developed as a multisensing platform for explosives recognition in vapor phase. The detection capabilities of the proposed device have been tested for common taggants such as 1-methyl-2-nitro-benzene (o-MNT)] and explosives (commercial detonation cord, a plastic tube filled with pentaerythritol tetranitrate (PETN); and C-4, a mixture of cyclotrimethylenetrinitramine (RDX), binders and plastifiers). The general strategy for the detection of explosives in vapor phase is based on the characteristic fingerprint each one produces as a result of the dissimilar chemical interactions between the ETS-10 coated µ -cantilevers and the target molecules emanating from the explosives and swept by ambient air. A portable lock-in amplifier has been implemented to exploit the truly benefits of the array in terms of portability, reduced size, and energy consumption. Such low-power electronic interface is capable of creating the excitation signal as well as obtaining the response values of four resonating µ -cantilevers simultaneously. The resulting sensing platform has successfully been applied for the o-MNT, PETN, and RDX detection at trace level.
000056184 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2010-19276$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2012-30802
000056184 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-sa$$uhttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
000056184 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056184 700__ $$0(orcid)0000-0002-2659-1051$$aAlmazán Román, Fernando$$uUniversidad de Zaragoza
000056184 700__ $$0(orcid)0000-0001-5973-4330$$aEguizabal Alguacil, Adela
000056184 700__ $$0(orcid)0000-0002-8448-7543$$aPellejero Alcázar, Ismael
000056184 700__ $$0(orcid)0000-0002-4931-1358$$aUrbiztondo Castro, Miguel Ángel$$uUniversidad de Zaragoza
000056184 700__ $$0(orcid)0000-0002-7742-9329$$aSesé Monclús, Javier$$uUniversidad de Zaragoza
000056184 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaría Ramiro, Jesús Marcos$$uUniversidad de Zaragoza
000056184 700__ $$aGarcía Romeo, Daniel
000056184 700__ $$0(orcid)0000-0003-2361-1077$$aCalvo López, Belén Teresa$$uUniversidad de Zaragoza
000056184 700__ $$0(orcid)0000-0002-5380-3013$$aMedrano Marqués, Nicolás Jesús$$uUniversidad de Zaragoza
000056184 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDepartamento de Ingeniería Química y Tecnologías del Medio Ambiente$$cTecnologías del Medio Ambiente
000056184 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDepartamento de Ingeniería Electrónica y Comunicaciones$$cElectrónica
000056184 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDepartamento de Física de la Materia Condensada$$cFísica de la Materia Condensada
000056184 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDepartamento de Ingeniería Química y Tecnologías del Medio Ambiente$$cIngeniería Química
000056184 773__ $$g16, 10 (2016), 3435-3443$$pIEEE sens. j.$$tIEEE SENSORS JOURNAL$$x1530-437X
000056184 8564_ $$s2325690$$uhttp://zaguan.unizar.es/record/56184/files/texto_completo.pdf$$yPostprint
000056184 8564_ $$s139222$$uhttp://zaguan.unizar.es/record/56184/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056184 909CO $$ooai:zaguan.unizar.es:56184$$particulos$$pdriver
000056184 951__ $$a2016-09-14-10:13:05
000056184 980__ $$aARTICLE