000164102 001__ 164102
000164102 005__ 20251121161351.0
000164102 0247_ $$2doi$$a10.1109/ACCESS.2025.3627080
000164102 0248_ $$2sideral$$a146212
000164102 037__ $$aART-2025-146212
000164102 041__ $$aeng
000164102 100__ $$aAl-Ssalih, Hasan N. H.
000164102 245__ $$aMagnetization Losses and Non-Reduced 3D Modeling of Hybrid CORC-TSTC Composite Conductors
000164102 260__ $$c2025
000164102 5060_ $$aAccess copy available to the general public$$fUnrestricted
000164102 5203_ $$aThe Conductor on Round Core (CORC) and Twisted Stacked-Tape Conductor (TSTC) are among the most promising architectures for high-temperature superconducting (HTS) cables due to their high current-carrying capabilities, essential for future fusion and high voltage -high current- power applications. While CORC designs offer mechanical robustness, their larger cross-sections can lead to spatial inefficiencies, whereas TSTC cables are more compact but limited in transport current. To bridge these trade-offs, a CORC–TSTC hybrid cable has been recently proposed by Korean researchers, though its electromagnetic performance remains largely unverified. In this work, we present a comprehensive three-dimensional electromagnetic study to validate the experimentally measured AC losses of such hybrid cables, using SuNAM Co. Ltd. GdBCO HTS tapes. Our model captures the full current dynamics on the surface and within the superconducting layers, overcoming the limitations of reduced-order gauge (2D) methods. The hybrid cable configurations considered consist of a six-tape CORC outer layer enclosing a TSTC core with one to four stacked tapes. The model incorporates magneto-angular anisotropy in the critical current density, informed by experimental data, to ensure accurate benchmarking. To contextualize the hybrid design’s performance, we also simulate two reference geometries: a single-layer and a double-layer CORC cable, as well as a ten-tape TSTC conductor. Results show that the hybrid configuration offers a compelling balance, combining low AC losses with compact geometry and structural flexibility.
000164102 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2023-146041OB-C21
000164102 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000164102 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000164102 700__ $$aClegg, Matthew
000164102 700__ $$0(orcid)0000-0002-8753-2397$$aBadía-Majós, Antonio$$uUniversidad de Zaragoza
000164102 700__ $$aRuiz, Harold S.
000164102 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000164102 773__ $$g(2025), 186952-186964$$pIEEE Access$$tIEEE Access$$x2169-3536
000164102 8564_ $$s2208027$$uhttp://zaguan.unizar.es/record/164102/files/texto_completo.pdf$$yVersión publicada
000164102 8564_ $$s2597931$$uhttp://zaguan.unizar.es/record/164102/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000164102 909CO $$ooai:zaguan.unizar.es:164102$$particulos$$pdriver
000164102 951__ $$a2025-11-21-14:26:32
000164102 980__ $$aARTICLE