000162698 001__ 162698
000162698 005__ 20251017144601.0
000162698 0247_ $$2doi$$a10.3390/electronics14142901
000162698 0248_ $$2sideral$$a145223
000162698 037__ $$aART-2025-145223
000162698 041__ $$aeng
000162698 100__ $$0(orcid)0000-0002-3652-5605$$aBallestín-Bernad, Víctor$$uUniversidad de Zaragoza
000162698 245__ $$aAnalytical Modeling of an Ironless Axial Flux Machine for Sizing Purposes
000162698 260__ $$c2025
000162698 5060_ $$aAccess copy available to the general public$$fUnrestricted
000162698 5203_ $$aThis paper presents a novel analytical model of a double-stator single-rotor (DSSR) ironless axial flux machine (IAFM), with no iron either in the rotor or in the stator, that has cylindrical magnets in the rotor. The model is based on sizing equations that include the peak no-load flux density as a determining parameter, and then static simulations using the finite element method show that the 3D magnetic field created by cylindrical magnets can be generally fitted with an empirical function. The analytical model is validated throughout this work with finite element simulations and experiments over a prototype, showing a good agreement. It is stated that the integration of the magnetic field for different rotor positions, using the empirical approach presented here, gives accurate results regarding the back-electromotive force waveform and harmonics, with a reduced computation time and effort compared to the finite element method and avoiding complex formulations of previous analytical models. Moreover, this straightforward approach facilitates the design and comparison of IAFMs with other machine topologies, as sizing equations and magnetic circuits developed for conventional electrical machines are not valid for IAFMs, because, here, the magnetic field circulates entirely through air due to the absence of ferromagnetic materials. Furthermore, the scope of this paper is limited to a DSSR-IAFM, but the method can be directly applied to single-sided IAFMs and could be refined to deal with single-stator double-rotor IAFMs.
000162698 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-03436
000162698 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000162698 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000162698 700__ $$aSanz-Sánchez, Guillermo
000162698 700__ $$0(orcid)0000-0001-7764-235X$$aArtal-Sevil, Jesús Sergio$$uUniversidad de Zaragoza
000162698 700__ $$0(orcid)0000-0002-4770-0069$$aDomínguez-Navarro, José Antonio$$uUniversidad de Zaragoza
000162698 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000162698 773__ $$g14, 14 (2025), 2901 [13 pp.]$$pElectronics (Basel)$$tElectronics (Basel)$$x2079-9292
000162698 8564_ $$s6900300$$uhttp://zaguan.unizar.es/record/162698/files/texto_completo.pdf$$yVersión publicada
000162698 8564_ $$s2445350$$uhttp://zaguan.unizar.es/record/162698/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000162698 909CO $$ooai:zaguan.unizar.es:162698$$particulos$$pdriver
000162698 951__ $$a2025-10-17-14:14:18
000162698 980__ $$aARTICLE